
QuID: Quantum-Resistant Identity Protocol
A Foundation for Extensible Decentralized Systems
Abstract

The QuID (Quantum-resistant Identity Protocol) introduces a novel approach to
creating persistent digital identities designed specifically for the post-quantum
era. The protocol employs quantum-resistant cryptographic primitives to ensure
long-term security against both classical and quantum attacks while maintain-
ing an extensible architecture that allows for future capability expansion. By
providing a robust identity layer with built-in quantum resistance, QuID serves
as a foundation for developing secure decentralized social networks, cryptocur-
rency systems, and other distributed applications that need to remain secure in
a post-quantum world.

1. Introduction

As quantum computing capabilities advance, the cryptographic foundations of
current digital identity systems face increasing vulnerability. Modern decentral-
ized systems require a strong foundation of digital identity that can withstand
both present-day classical attacks and future quantum threats. Current solu-
tions often lack comprehensive quantum resistance or are too rigidly designed for
specific applications. QuID addresses these limitations by providing a protocol
that is both quantum-resistant from the ground up and extensible to accommo-
date future use cases.

The key innovation of QuID lies in its consistent use of quantum-resistant prim-
itives throughout the entire protocol stack, from basic operations like hashing
to advanced features like digital signatures. This approach ensures that no
component of the system becomes a weak link in the post-quantum security
chain.

2. Design Goals

The protocol aims to achieve the following objectives:

2.1. Quantum Resistance: Ensure all cryptographic operations remain secure
against attacks from both classical and quantum computers by exclusively using
post-quantum cryptographic primitives.

2.2. Extensibility: Support the addition of new capabilities without requiring
protocol modification, allowing the identity system to evolve with emerging
needs.

2.3. Self-Sovereignty: Enable users to maintain complete control over their
identities without relying on central authorities or trusted third parties.

2.4. Verifiability: Allow third parties to verify claims and extensions associated
with identities using quantum-resistant verification mechanisms.
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2.5. Privacy: Provide mechanisms for selective disclosure of identity attributes
while maintaining quantum resistance.

3. Core Protocol Components

3.1 Identity Generation Each QuID identity consists of the following com-
ponents:

Identity {
id: SHAKE256(public_key || creation_timestamp)
public_key: Bytes // From ML-DSA
private_key: Bytes // From ML-DSA
creation_timestamp: Uint64
version: String
metadata: Map<String, Bytes>
extensions: Map<String, Extension>

}

The identity generation process uses ML-DSA (formerly CRYSTALS-Dilithium)
for key generation, providing NIST-standardized post-quantum security. The
unique identifier is derived using SHAKE256, which offers quantum resistance
as part of the SHA-3 family.

3.2 Extension Framework Extensions are self-contained modules that add
functionality to the base identity:

Extension {
type: String
data: Bytes
signature: Bytes // ML-DSA signature
timestamp: Uint64
version: String
metadata: Map<String, Bytes>

}

All extensions must be signed using the identity’s ML-DSA private key, creating
a verifiable chain of ownership that remains secure against quantum attacks.

4. Protocol Operations

4.1 Identity Creation

1. Generate quantum-resistant keypair using ML-DSA
2. Record creation timestamp
3. Generate unique identifier using SHAKE256
4. Initialize empty extension and metadata stores
5. Perform quantum-resistant proof of possession

2



4.2 Extension Management Extensions are added through a defined pro-
cess:

1. Serialize extension data using quantum-resistant encoding
2. Sign serialized data with identity’s ML-DSA private key
3. Create extension structure
4. Add to extension store with quantum-resistant integrity protection

4.3 Verification The protocol provides quantum-resistant mechanisms for:

1. Identity ownership verification using ML-DSA
2. Extension authenticity verification
3. Claim verification with zero-knowledge proofs when needed

5. Security Analysis

5.1 Quantum Security Considerations All cryptographic primitives in
QuID are selected to provide security against quantum attacks. The protocol
uses:

1. ML-DSA for signatures (NIST standardized PQC)
2. SHAKE256 for hashing (quantum resistant)
3. ML-KEM for any required key encapsulation
4. Quantum-resistant authenticated encryption for data protection

5.2 Security Levels QuID supports multiple security levels corresponding to
NIST security categories:

1. Level 1: 128 bits of quantum security
2. Level 3: 192 bits of quantum security
3. Level 5: 256 bits of quantum security

6. Implementation Guidelines

6.1 The protocol should be implemented using constant-time operations to pre-
vent timing attacks

6.2 All random number generation must use quantum-resistant entropy sources

6.3 Implementation should use the liboqs library for standardized quantum-
resistant primitives

6.4 Memory handling must be secure to prevent key material leakage

7. Future Considerations

7.1 Protocol upgrade paths for quantum-resistant algorithm transitions

7.2 Integration with quantum key distribution systems

7.3 Extension to support quantum-resistant distributed identity verification
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8. Conclusion

QuID provides a robust foundation for building quantum-resistant decentralized
systems that require strong identity guarantees. Its extensible architecture and
comprehensive use of post-quantum cryptography make it suitable for long-term
use in critical applications.

9. Network Protocol Specification

The QuID network layer ensures secure communication between identities while
maintaining quantum resistance throughout the networking stack.

9.1 Peer Discovery The peer discovery mechanism uses a quantum-resistant
Distributed Hash Table (DHT) based on the following principles:

9.1.1 Bootstrap Process Nodes enter the network through quantum-
resistant bootstrap nodes. The bootstrap sequence: 1. New node generates
temporary ML-KEM keypair 2. Connects to bootstrap nodes using ML-KEM
for key encapsulation 3. Receives initial peer set encrypted with ML-KEM 4.
Verifies peer signatures using ML-DSA

9.1.2 DHT Structure The DHT uses SHAKE256 for consistent hashing and
network organization:

DHT_Node {
node_id: SHAKE256(public_key)
routing_table: Map<Distance, Vec<PeerInfo>>
stored_records: Map<SHAKE256_Hash, Record>

}
PeerInfo {

identity: QuID_Identity
network_address: Vec<Address>
last_seen: Uint64
signature: ML-DSA_Signature

}

9.1.3 Node Authentication Each network interaction requires mutual au-
thentication: 1. Nodes exchange ML-DSA signatures over session-specific chal-
lenges 2. Session keys established using ML-KEM 3. Ongoing communication
encrypted using quantum-resistant authenticated encryption

9.2 Message Routing

9.2.1 Overlay Network The QuID overlay network provides: - Quantum-
resistant path selection - Multi-path message routing - Traffic analysis resistance
through padding and mixing

4



9.2.2 Message Structure

Message {
header: {

version: String
source_id: QuID_Identity
destination_id: QuID_Identity
timestamp: Uint64
message_type: String
routing_flags: Uint32

}
payload: EncryptedData {
content: Bytes
encryption_metadata: {

algorithm: "ML-KEM-768"
parameters: Map<String, Value>
nonce: Bytes

}
}

signature: ML-DSA_Signature
}

9.2.3 End-to-End Security All messages use: - ML-KEM for initial key
exchange - Quantum-resistant authenticated encryption for payload - Forward
secrecy through frequent key rotation - Post-compromise security via ratcheting
protocols

10. Key Management Procedures

10.1 Key Backup and Recovery

10.1.1 Social Recovery Protocol QuID implements a t-of-n threshold
scheme for key recovery:

Recovery_Share {
shard_id: Uint32
encrypted_key_data: {

key_material: EncryptedData
metadata: Map<String, Value>
recovery_timestamp: Uint64
verification_data: Bytes

}
guardian_signature: ML-DSA_Signature

}

The recovery process requires: 1. Collection of t valid recovery shares 2.
Quantum-resistant share combination 3. Key reconstruction verification 4.
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Extension key regeneration

10.1.2 Encrypted Backup Backup data is protected using: - ML-KEM for key
protection - Quantum-resistant authenticated encryption - Tamper-evident seal-
ing - Version control for recovery compatibility

10.2 Key Rotation

10.2.1 Scheduled Rotation The protocol mandates regular key rotation: 1. Gen-
erate new ML-DSA keypair 2. Create signed transition record 3. Update all
dependent extensions 4. Propagate changes through network 5. Secure deletion
of old keys

10.2.2 Emergency Rotation For compromised key scenarios: 1. Broadcast revo-
cation certificate 2. Rapid new key generation and distribution 3. Extension
re-signing with new keys 4. Recovery of encrypted data using backup mecha-
nisms

11. System Requirements and Performance

11.1 Computational Requirements

11.1.1 Processing Resources Minimum specifications for different security
levels: - Level 1 (128-bit): 2GHz processor, 1GB RAM - Level 3 (192-bit):
2.5GHz processor, 2GB RAM - Level 5 (256-bit): 3GHz processor, 4GB RAM

11.1.2 Memory Patterns Runtime memory requirements: - Key generation:
32-128MB temporary allocation - Signature operations: 16-64MB working set
- Extension processing: Varies by type - Network operations: 64-256MB buffer
space

11.1.3 Storage Requirements Persistent storage needs: - Core identity: 1-
4KB - Extension data: Variable (typically 1-100KB per extension) - Network
cache: Configurable (recommended 1-10GB) - Key backup: 16-64KB per backup
set

11.2 Network Requirements

11.2.1 Bandwidth Model Expected bandwidth usage: - Node discovery:
1-5KB/s average - Extension synchronization: 0.1-1KB/s per active extension
- Message routing: Dependent on usage (typically 1-10KB/s) - Key rotation:
Burst traffic during rotation (approximately 10-50KB)

11.2.2 Latency Considerations Performance targets: - Local operations:
<100ms - Network operations: <1s (95th percentile) - Key rotation: <5s com-
plete propagation - Recovery operations: <30s for full recovery
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11.2.3 Scalability Characteristics The system scales with: - O(log n) rout-
ing complexity - O(n) storage growth - O(m) extension cost (m = number of
extensions) - O(k) key rotation cost (k = number of active connections)

12. Implementation Reference

12.1 Core Components

// Primary QuID implementation components
struct QuID_Implementation {

identity_manager: IdentityManager,
network_handler: NetworkHandler,
extension_registry: ExtensionRegistry,
key_manager: KeyManager,
security_policy: SecurityPolicy

}

// Example initialization sequence
fn initialize_quid() -> Result<QuID_Implementation> {

// Initialize with quantum-resistant entropy
let entropy = quantum_resistant_random(32);

// Create core components
let implementation = QuID_Implementation {

identity_manager: IdentityManager::new(entropy),
network_handler: NetworkHandler::new(

NetworkConfig::default_quantum_resistant()
),
extension_registry: ExtensionRegistry::new(),
key_manager: KeyManager::new(

KeyConfig::high_security()
),
security_policy: SecurityPolicy::strict_quantum_resistant()

};

// Verify quantum resistance of all components
implementation.verify_quantum_resistance()?;

// Initialize networking subsystem
implementation.network_handler.start()?;

// Set up extension handlers
implementation.extension_registry.register_default_extensions()?;

// Establish security monitoring
implementation.security_policy.start_monitoring()?;
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Ok(implementation)
}

13. Threat Model Analysis

The security of the QuID protocol must be evaluated against both classical and
quantum threats. This section provides a comprehensive analysis of the threat
landscape and security boundaries of the system.

13.1 Protected Attack Vectors The protocol provides protection against
the following attack vectors:

13.1.1 Quantum Computing Attacks QuID’s security model assumes
the presence of large-scale quantum computers. The protocol maintains
security through: - Quantum-resistant signature schemes using ML-DSA -
Post-quantum key encapsulation with ML-KEM - Quantum-resistant hash
functions like SHAKE256 - Forward-secure messaging protocols resistant to
retrospective quantum decryption

13.1.2 Network-Level Attacks The protocol defends against sophisticated
network adversaries through: - Quantum-resistant authenticated encryption for
all messages - Multi-path routing to prevent route analysis - Traffic padding
and mixing to defeat timing analysis - Replay protection using strictly mono-
tonic timestamps and nonces - Man-in-the-middle prevention through ML-DSA
signature verification

13.1.3 Identity and Extension Attacks The system prevents tampering
with identities and extensions via: - Unforgeable quantum-resistant signatures
on all identity claims - Cryptographic binding between identities and their ex-
tensions - Version control and tamper-evident logging of all modifications - Zero-
knowledge proofs for selective attribute disclosure - Strong revocation mecha-
nisms for compromised identities

13.1.4 Post-Compromise Security Even after a temporary breach, the
system provides: - Forward secrecy through frequent key rotation - Post-
compromise security via ratcheting protocols - Secure recovery mechanisms
through social backup - Ability to revoke and replace compromised credentials
- Isolation of damage through extension compartmentalization

13.2 Out of Scope Threats The protocol explicitly does not protect against:

13.2.1 Physical Security

• Direct physical access to user devices
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• Hardware-level tampering
• Side-channel attacks except timing attacks
• Compromised random number generators
• Physical observation of user input

13.2.2 System-Level Security

• Operating system compromises
• Malware on user devices
• Memory scraping attacks
• Keyloggers and screen capture
• Privileged process interference

13.2.3 Social Attacks

• Social engineering against users
• Phishing for recovery shares
• Coercion of key holders
• Insider threats in organizations
• Human operational security failures

13.3 Security Assumptions The security guarantees of QuID rely on the
following assumptions:

13.3.1 Cryptographic Assumptions

• The quantum security of ML-DSA signature scheme
• The quantum security of ML-KEM encapsulation
• The collision and preimage resistance of SHAKE256
• The security of the implemented zero-knowledge proof systems
• The quantum resistance of the authenticated encryption

13.3.2 Implementation Assumptions

• Correct implementation of all cryptographic primitives
• Secure generation of random numbers
• Proper clearing of sensitive memory
• Constant-time operations where required
• Correct implementation of the protocol specification

13.3.3 Operational Assumptions

• Users can securely store their private keys
• Recovery shares are distributed to trusted parties
• Network connectivity is generally available
• Users follow security best practices
• Systems running QuID maintain basic security hygiene
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13.4 Risk Mitigation Strategies To address residual risks, the protocol
recommends:

13.4.1 Technical Controls

• Regular security audits of implementations
• Automated testing for cryptographic correctness
• Runtime verification of security properties
• Continuous monitoring for protocol violations
• Automated detection of potential compromises

13.4.2 Operational Controls

• User education and security awareness
• Regular key rotation schedules
• Backup and recovery testing
• Incident response procedures
• Security logging and monitoring

13.4.3 Governance Controls

• Clear security policies
• Regular threat model reviews
• Incident response plans
• Compliance monitoring
• Security metrics and reporting

This threat model should be regularly reviewed and updated as new attack
vectors emerge and quantum computing capabilities advance.
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Appendix A: Extension Interface Specification

The QuID extension interface provides a standardized way to add capabilities
to identities while maintaining quantum resistance. This specification defines
the requirements and interfaces for creating compatible extensions.

A.1 Extension Structure Definition

Extensions must implement the following interface:

ExtensionInterface {
// Core Extension Properties
type: String // Unique identifier for extension type
version: String // Semantic version of extension
data: EncryptedData { // Quantum-resistant encrypted data structure

payload: Bytes
encryption_metadata: {

algorithm: String // Must be quantum-resistant
parameters: Map<String, Value>
nonce: Bytes

}
}

// Quantum-resistant signature components
signature: {

algorithm: String // Must be ML-DSA
value: Bytes
public_key: Bytes
metadata: Map<String, Value>

}

// Extension metadata
metadata: {

created_at: Uint64
updated_at: Uint64
permissions: Map<String, Value>
dependencies: Vec<DependencyInfo>

}
}
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A.2 Extension Implementation Requirements

1. Cryptographic Requirements
• All cryptographic operations must use quantum-resistant algorithms
• Signatures must use ML-DSA with minimum security level matching

the identity
• Data encryption must use quantum-resistant authenticated encryp-

tion
• Key derivation must use quantum-resistant key derivation functions

2. Data Handling
• All sensitive data must be encrypted at rest
• Clear memory after cryptographic operations
• Implement secure deletion capabilities
• Support selective disclosure mechanisms

3. Extension Lifecycle
• Support version migration
• Implement clean deactivation
• Provide extension revocation mechanisms
• Handle dependency management

A.3 Standard Extension Types

A.3.1 Social Network Extension

SocialNetworkExtension {
type: "social_network"
data: {

profile: {
username: String
display_name: String
bio: String

}
connections: Vec<{

identity_id: String
relationship: String
established_at: Uint64
proof: ML-DSA-Signature

}>
posts: Vec<{

content: EncryptedData
timestamp: Uint64
signature: ML-DSA-Signature

}>
}

}

A.3.2 Cryptocurrency Extension

CryptocurrencyExtension {
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type: "cryptocurrency"
data: {

wallet: {
address: String
public_parameters: Map<String, Bytes>

}
transactions: Vec<{

tx_hash: SHAKE256-Hash
timestamp: Uint64
signature: ML-DSA-Signature

}>
}

}

Appendix B: Security Proofs

This appendix provides formal security proofs for the QuID protocol’s core
components.

B.1 Identity Uniqueness Theorem

Theorem 1: The probability of identity collision in QuID is negligible even
against quantum adversaries.

Proof: Let A be a quantum adversary with access to a quantum computer with
n qubits. The probability of finding a collision in the identity generation process
is bounded by:

P(collision) � (q^2/2) * 2^(-min(|SHAKE256|, |ML-DSA-pk|))

where: - q is the number of quantum queries A can make - |SHAKE256| is the
output length of SHAKE256 - |ML-DSA-pk| is the bit length of ML-DSA public
keys

Given that both SHAKE256 and ML-DSA provide at least 128 bits of quantum
security at their lowest security level, the probability remains negligible even
against quantum attacks.

B.2 Extension Binding Security

Theorem 2: Extensions are unforgeable under chosen message attacks by quan-
tum adversaries.

Proof: We reduce the unforgeability of extensions to the quantum security of
ML-DSA. Assume a quantum adversary A can forge a valid extension with non-
negligible probability �. We construct an algorithm B that breaks ML-DSA with
probability �/q where q is the number of extension queries.

The reduction works as follows: 1. B receives an ML-DSA public key pk 2.
B simulates the QuID protocol for A, using pk as the identity’s public key 3.
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B forwards A’s signature queries to the ML-DSA signing oracle 4. When A
outputs a forged extension, B extracts the signature

The success probability contradicts the proven security of ML-DSA against quan-
tum adversaries, thus proving extension unforgeability.

B.3 Privacy Preservation

Theorem 3: The selective disclosure mechanism in QuID provides computational
privacy against quantum adversaries.

Proof: The privacy of the selective disclosure mechanism relies on: 1. The
quantum security of ML-KEM for key encapsulation 2. The quantum security
of the authenticated encryption scheme 3. The zero-knowledge property of the
proof system

We prove that an adversary with quantum capabilities cannot distinguish be-
tween real and simulated selective disclosures with non-negligible advantage,
maintaining privacy even in a quantum setting.

These security proofs are presented for peer review and verification. They build
upon the formal security definitions and proof techniques established in the
quantum cryptography literature, particularly drawing from the security models
presented in [1] and [3]. We encourage careful review and analysis of these proofs
by the cryptographic community.

Note: Implementation of this protocol should undergo thorough security review
and formal verification before deployment in critical systems.
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